
Pergamon 
J. AppL Maths Mechs, Vol. 62, No. 4, pp. 529-536, 1998 

© 1998 Elsevier Science Ltd 
All rights reserved. Printed in Great Britain 

PII:  S0021-8928(98)00069-0 0021-8928/98/S--see front matter 

RESTORATION OF CONTROLS UNDER CONDITIONS 
OF INCOMPLETE INFORMATION ON 

THE DYNAMICS OF THE SYSTEMS 

A. I. K O R O T K I I  

Ekaterinburg 

(Received 9 November 1997) 

The inverse dynamical problem of the restoration of the controls or parameters of a dynamical system which are unknown in 
advance is considered, using results from the observation of the motion of the system under conditions when there is incomplete 
information on the phase states of the system. It is assumed that, at appropriate actual instants of time, the observer only obtains 
certain information sets containing the actual phase states of the system. It is well known that this problem is ill posed. Constructive 
dynamic regularizing algorithms for solving the problem are constructed which possess the property of physical feasibility and 
are capable of working under real-time conditions while processing incoming information during the motion of the system and 
producing a result in dynamics as the motion develops. © 1998 Elsevier Science Ltd. All rights reserved. 

In this paper we use the ideas of positional control, under conditions where there is incomplete informa- 
tion, from the theory of differential games [1--6], (see also [7-13]). The previously proposed approach 
to inverse problems in dynamics [14-17] is the basis for solving the problem. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider a controllable dynamical system, the behaviour of which in a specified time interval 
T = [to, O] (--o0 < to < ~ < +0o) is described by the system of ordinary differential equations 

J¢(t) = f ( t , x ( t ) ,u ( t ) ) ,  t o ~ t ~ t~; x ( t ) ~  R", u(t) ~ R m (1.1) 

Here, x(t) is the vector of the state of the system at the instant of time t e T and u(t) is the vector of 
the control actions at this instant of time. The value of u(t) is selected within the limits of the non- 
empty compact set P(t) C R m, the compact sets P(t) change continuously in the Hausdorff  metric as 
the time t e T changes. The function f is continuous in T x R n x R m and satisfies the usual conditions 
(the condition of sublinear growth and a local Lipschitz condition with respect to the variable x; see 
[2, 18, 19], for example) that ensure the existence of a unique solution x(. ) = x(. ; to, x0, u(. )) which is 
absolutely continuous in T for any initial position (to, x0) ~ T × R n, and any permissible control u(.  ) e 
U. The non-empty set of permissible controls U consists of all Lebesgue measurable functions u(.  ) : 
T ~ t ~ u(t) e P(t). The solutionx(. ) = x(.; to, Xo, u(.)) is sometimes called the motion of the dynamical 
system (1.1) generated by a control u(.  ) from the initial position (to, x0). 

Suppose that some bounded set of initial states X0 c R n is specified and 

X = {x(.) --- x(. ; t 0, x0, u(.)): x 0 e X0, u(.) e U} 

For each possible motion x(. ) ~ X, we denote the set of all permissible controls which generate the 
given motion 

U(x(.)) = {u(.) ~ u : x(-) = x(.; to, xo,u(-))} 

by V(x(.)). 
For any many-valued mapping G(.  ): T ~ comp(Rn), where comp(R ~) is the set of all non-empty 

compact sets from R", suppose X[G(.  )] denotes the set of all possible motions of system (1.1) lying in 
the mapping (in the phase constraints) G(.  ) 

X[G( ' ) ]  = {x(') e X : x(O e G(t), t ~ T} 
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where U[G(.)] is the set of all controls generating the motions from X[G(.)], and 

U[G(-)] = U { U(x(.)) : x(.) e X[G(.)] } 

We will now give a meaningful description of the problem. We will assume that a certain motion 
x,(. ) e Xis controlled in a time interval T. During this process, the observer obtains certain information 
which only enables him to estimate certain sets G(t) in the phase space of the system, which contain 
the actual states x,(t) of the motion x.(-). However, this information is insufficient either for an exact 
calculation of the value of x.(t) or for its satisfactory statistical description within the limits of this 
information set G(t). The  question as to how the sets G(t) are formed using some method of observing 
the system and the motion is left to one side for the moment. We simply assume that the information 
arriving at the observer up to an instant of time t • T enables him to determine the set G(t) while, at 
the same time, it is possible for him to refine these data at the instant of time t in order to find a smaller 
subset of the set G(t). Some of the methods of observation are described in [1, 4], for example. 

The set G(t) is naturally treated as an "ideal" result of observation. By virtue of the inevitable noise 
in the observation and measurement channel, this result is unattainable in practice. The actual result 
of observation is to be considered as a certain "perturbed" set Z(t) • comp(R~), which differs from the 
set G(t) in the magnitude of the error with respect to a certain observation error criterion v : comp(R n) 
× comp(R ~) -~ R+ = [0, ~) 

v(Z(t), G(t)) <<, h, t e T 

Let us agree to call the function G(.  ) : T 3 t --> G(t) • comp(R n) the ideal result of observation while 
we call the function Z( .  ) : T 3 t --> G(t) e comp(R n) the h-perturbation of the ideal result of observation 
C(.). 

Suppose a certain criterion of the closeness of the controls p : U × U ~ R+ is given. The problem 
being considered can be formulated in advance as follows: it is required to construct an algorithm which, 
in the dynamics with respect to an h-perturbation Z(. ) of the ideal result of observation G(. ), constructs 
a control Uh(" ) • Uwhich, for a sufficiently small h > 0, is sufficiently close, with respect to the criterion 
p, to one of the controls of the set U(x.(.)) or, in the extreme case, of the set U[G(. )]. It is assumed 
that information concerning the dynamics of system (1.1) and the sets P(t), t • T is known in advance 
by the observer who is seeking to solve the restoration problem which has been formulated. 

The restoration problem described is a version of the formulation of a well-known inverse problem 
of dynamics for control systems [20-23]. The special feature of the formulation considered here is the 
following: first, the problem has to be solved under conditions when the information on the actual phase 
positions of the dynamical system is substantially incomplete, second, the required algorithm must work 
in real time and possess the property of physical feasibility and, third, the algorithm must be stable with 
respect to small perturbations of the ideal result of observation. 

We will now discuss the special features of the formulation of the problem and a method for solving 
it. It is clear that the incompleteness of the information considerably reduces the ability of the observer 
to restore the unknown control. Therefore, in order just to obtain some solution of the problem, we 
assume that some law of evolution of the information sets G(t), t • T is also known. In solving the 
problem, we shall seek a method of solving it which will realize the restoration of the required control 
in the dynamics synchronously with the development of the process in time or, as is sometimes also 
said, at the rate of real time. In restoring the required quantity, the observer can only take account of 
that information which has arrived at the corresponding instant of time. The restoration process must 
be a "one-shot" process as it would be impossible to repeat it without going backwards in time. In order 
that the dynamic solution should be of practical value, it is necessary that the corresponding solution 
operations should be constructed in the class of operations with the property of physical feasibility which 
is sometimes referred to as a hereditary property or a causality property: the results of operations 
(outputs) coincide in time as long as the arguments (outputs) coincide in time [2, 18, 19]. 

The corresponding justifications and various examples of meaningful problems, in which it is important 
to obtain a dynamic solution of an inverse problem, are presented in [14, 17, 24], for example. When 
there is noise in the observation channel, the problem may turn out to be ill-posed and the corresponding 
solution operation must therefore also possess regularizing properties [25-27]. In estimating the 
possibility of a practical solution of the problem using a computer, we shall try to find its solution using 
a scheme which is discrete in time. 

We will now refine the formulation of the problem. On considering, a posteriori, the inflow of 
information during the observation G(.), the observer is forced to conclude that, in principle, any control 
from the set U[G(.)] can be compatible with this information since each control u(.) from this set, in 
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the case of a certain initial state x0 e G(t0), generates a motion of the system x(. ) = x(.; to, x0, u(. )) 
which satisfies the inclusionx(t) ~ G(t), t ~ T. It is necessary that the actual control u.(. ) which generates 
the motionx.(. ) belongs to the set U(x.(. )) and, all the more, to the set U[G(-)] but, generally speaking, 
it has to be guessed as to which of the controls from the set U[G(. )] and, all the more, from the set 
U(x°(. )) is u.(.  ) as the observer cannot, even if the information G(. ) is exact. Generally speaking, the 
motion x.(. ) will not be known a posteriori as all the information concerning the motion is used up 
(when there are no errors) towards the end of the time interval T just by the observation G(.  ). Hence, 
there is an equal chance that each of the motions x(. ) e X[G(. )] refers to the actual motion. 

Hence, every control u(. ) e U[G(.)] with the same aposteriori chances may refer to the actual motion. 
At the same time, it is automatic that every control outside the bounds of the set U[G(. )] cannot be 
the actual control. In other words, U[G(. )] has the meaning of the set of those and only those controls 
which are not precluded aposteriori as the actual control. It is also natural to attempt to find the controls 
from this set in the first place. When there is additional information on the behaviour of the sets G(t), 
t ~ T, one can also attempt to find the controls from the set U(x°(. )). 

Suppose a certain criterion for the selection of controls, which is defined by the functional co: U 
R, is specified in U and U°[G(. )] is a subset of the set U[G(. )], that consists of the elements which 
satisfy this criterion 

U,[G(.)] = {u(.) ¢ U[a(.)]:co(u(.)) <. co,} 

where co. is a certain specified fixed number. Suppose _=[h, G(. )] is the set of all many-valued mappings 
T---> comp(R n ) which can aspire to the role of h-perturbation of the ideal result of the observation G(. ) 

.~[h, G(.)] = {Z(.) ~ (T ---> comp(R n)) :v(Z(t), G(t)) <<- h, t ~ T} 

When there is noise in the observation channel, the observer can, in fact, obtain any of the elements 
of the set -=[h, G(.  )] as the h-perturbation of the ideal result of observation. It is therefore natural that 
the method or restoration algorithm should be calculated on receipt of any element from -=[h, G(.)]. 

The simplest examples show that the problem being considered can turn out to be unstable with respect 
to small perturbations of the sets G(t), t ~ T. The restoration algorithm must therefore be stable, that 
is, the result of the operation of the algorithm must be as close as desired to some element of the set 
U.[G( • )] or to this same set according to the criterion of the closeness of the controls p for a sufficiently 
small h whatever the h-perturbation Z(.) ~ ~[h, G(.)] is here. 

The property of the physical feasibility of the restoration algorithm (or, what is the same thing, of 
the corresponding operator D :R+ × (T---> comp(R#)) ---> U) signifies the following: ul(t) = u2(t), to ~< 
t ~< x only if ul(. ) = D(h, ZI(')), u2(" ) = D(h, Z2(' )), h > 0, Zl(t) = Z2(t), to ~< t ~< x, t o ~< t ~< a~. Every 
algorithm (operator) D, which calculates its values using a positional method, that is, u(t) for t ~ T is 
determined using t, Z(t) and, possibly, certain auxiliary internal variables, automatically possesses the 
above-mentioned property. 

The restoration problem can now be formulated as follows: it is required to construct an operator 
D : R÷ x (T --> comp(Rn)) ~ U), possessing the property of physical feasibility and such that, for any 
fixed G(.) ~ M _C (T ---> comp(Rn), the condition 

sup{p(D(h, Z(.)), U, [G(.)]) : Z(.) e ~[h, G(.)]} --> O, h ---> 0 

is satisfied, where M is a certain set of possible ideal results of observations which are subject to 
appropriate processing and 

p(D(h, Z(.)), U, [G(.)]) = inf{p(D(h, Z(.)), u(.)) : u(.) ~ U.[G(.)]} 

An element uh(. ) = D(h, Z(. )) can be taken as being close to a certain element of an apriori unknown 
set of controls U.[G(. )]. In order to construct the restoration algorithm D we shall seek a suitable 
positional strategy V of control by a certain auxiliary system-model. The realization of the strategy V 
will also be taken as the value of the algorithm D. The system-model must be close in a certain sense 
to the initial system and the strategy V must be such that the motions of the system-model which it 
generates track the evolution of the information sets in a certain sense. In the following section, we 
refine all of the concepts and informally describe a method for solving the restoration problem. 
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2. S O L U T I O N  OF THE P R O B L E M  

We will introduce a system-model into the treatment which, for simplicity, is a copy of the initial system 

y(t)= y(t,y(t),u(t)), t o ~ t ~  6 (2.1) 

Here, the control actions are constrained by the condition v(t) • P(t), t • T. 
The positional strategy V of the control by the model is identified with the mapping T x T x R n x 

comp(R n) ~ Y., where E is the set of all contractions of the functions from U in all possible half intervals 
[t, s) C T, Y. = tO{U[t, s) : [t, s) C T} and U[t, s) is the set of all Lebesgue measurable functions 
u(.  ) : [t, s) ? t --~ u(t) • P(t). For arbitrary t e T, s • T, y • R n, Y • comp(Rn), we assume that V(t, s, 
y, Y) is an arbitrary element of U if t 1> s or y • Y; if t < s and y q~ Y, then V(t, s, y, I 0 is any of the 
elements v(.) • U),  s) which satisfies the condition 

where ( -,. ) is a scalar product R n and z is any of the vectors of the set Ywhich is closest in the Euclidean 
metric to the vectory. The above-mentioned strategy is an analogue of the well-known extremal strategy 
from the theory of differential games [1-5, 19]. 

We will say that the mapping G(.  ) : T ~ comp(R n) is stable by virtue of system (2.1) if, for any tl • 
T, t2 • T, tl < t2, Yl • G(tl), a control w(.  ) • U[tl, t2) exists such that the solution y(.  ) = y(. ; tb Yl, 
w(. )) of the Cauchy problem y( t )  = f(t, y(t), w(t)), y(tl) = Yl, tl <~ t, <~ t2 satisfies the condition y(t2) • 
G(t2). The set S of all mappings which are stable by virtue of system (2.1) is a non-empty set. Suppose 
that So is a subset of the set S for each element G(- ) of which a number C > 0 is found such that, for 
anyh  > 0, t • T,y • R n, Z(.) • ~,[h, G( . ) ] ,y l  • O(y, G(t)),y2 • a(y,  Z(t))  the inequality [lYl -Y2 l[ <~ 
Ch is satisfied, where I1" II is the Euclidean norm in R n and Q(y, fl) is the set of elements of the compact 
set f2 C R n which is closest in the Euclidean metric to the elementy • R ~. So is a non-empty set. 

We will now describe the restoration algorithm and fix the arbitrary h > 0, G(.  ) • (T ~ comp(Rn)), 
Z(.) ~,[h, G(.  )], the subdivision A of the interval Tby the points ti, to < tl < . . .  <tm = ~, the dependence 
m = m(h)  and the number C. > 0 such that 

diam A = max{ti+j - t i : i = 0 ..... m - 1} ~< C.h 

We now consider a control uh(') • U which is formed using the rule 

uh(t) =v i(t), t i ~ t <ti+ l, vi(.)= V(ti,ti+l,y(ti),Z(ti) ) 

where y(ti) is the state of the model at the instants of time ti, i = 0 . . . . .  m - 1. The transition from one 
state of the model to another is made in accordance with the differential equation for the motion of 
the model 

Y(ti)= Y(ti-I)+ S f(x',Y('C),ui(x))dx 
ti-I 

where y(to) = Yo is an arbitrary fixed initial state of the model from the set Z(to). 
We now define the operator (algorithm) D according to the rule 

D(h, Z(-)) = uh(-) (2.2) 

We will describe the operation of this algorithm in time. Up to the instant of time to, depending on 
the level of the error h, a subdivision A of the interval T is chosen and fixed which satisfies the condition 
h <<. C.h. Each point ti, used in the subdivision A, will be the start of the following step in calculating 
the new state of the model and a new form of the strategy V. At the instant of time to, an information 
set Z(to) is received by the observer from which he selects and fixes some initial state Y0 for the model. 
The form v0(. ) = Vto), tl, Yo, Z(to)) of the strategy V in the interval t o ~< t < tl an the state Y(h) of the 
model at the instant of time tl are then calculated. At the instant tl ,  an information set Z(tl)  is received 
by the observer which is used, together with the state of the modely(tl), to find the form vl(.) = V(tl, 
t2, y(tO, Z(t~)) of the strategy V in the interval t~ ~< t < t2 and the state y(t2) of the model at the instant 
t2. The corresponding new forms of the strategy and the states of the model are constructed in the 
following intervals on receipt of new information sets by the observer, by analogy with those which have 
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been constructed in the preceding step. Towards the final instant of time 9, the realization of the 
algorithm uh(. ) will be formed in the dynamics which is also taken as an approximation to the required 
controls. From the description of  the operation of the algorithm in time it is clear that its realization 
in real time is also possible. The variable describing the state of the model can be considered as an 
internal variable of  the algorithm, and the values of this variable can be physically worked out completely 
autonomously using a computer. 

We will now point out certain conditions under which the algorithm automatically provides a solution 
of  the restoration problem. 

Condition 1: (a) v is the Hausdorff  metric in comp(R~); (b) (U, p) is a compact metric space; 
(c) o~, > sup{a~(u(.)) :u(.)  e U); ( d ) M  --- So; e) if p(u~(.), u(-)) ---> 0, thenx(-; to, Xo, uk(.)) ~ x ( . "  to, Xo, 
u(.)) C(T; Rn). 

We will comment on this condition. The Hausdorff metric is often used to estimate the distances between compact 
sets [1--6, 18, 19, 28, 29]. The space (U, P) is compact, for example, when U is a weakly compact set in LP(T; Rm), 
1 < p < ~o and P is a so-called "weak" metric in U [18]. In this case, condition lc in fact precludes an additional 
selection of controls from the problem as, in this case, U.[G(.)] = U[G(.)]. However, there will actually be an 
additional selection of controls in one form of the problem under consideration which will be discussed below. 
The condition M = So arises from the desired to use stable external constructions from the theory of positional 
control to solve the inverse problem in dynamics [1-5, 19]. The last property from the condition is automatically 
satisfied, for example, in the case of linear systems or non-linear systems with a right-hand side of the form 
f = fl(t,X)U + f2(t,X). 

Theorem 1. When condition 1 is satisfied, the dynamic algorithm (2.2) gives the solution to the 
restoration problem. 

Proof. The property of the physical feasibility of the dynamic algorithm (2.2) follows from the positional 
character of  the strategy V. To prove the theorem, it is now sufficient to show that, whatever the element 
G(.  ) ~ M and whatever the sequences (h~} (hk > 0, hk ---> 0), {Zk(.)} (Zk(.) ~ ~[hk, G(.)]) ,  the 
convergence P(Uk(" ), Uo[G(. )]) ~ 0 when k ---> oo will hold for the controls uk(.) = D(hk, Zk(.)) .  
On taking account of  the definition of  the strategy V and the rule for the formation of the controls 
uk(- ), the following estimate can be obtained for the error ek[t] = min{Jly(t; to, Yo, Uk(" )) - g  )12 :g e G(t)} 

maxlg~tt] : t E T} ~ Coh k 

where Co is a certain positive number which is independent of the number k and is defined solely a 
priori by the known data concerning the problem. It follows from this that ek[t] ---> 0 as k ---> ~ for each 
t ~ T. On taking account of compactness of the space (U, p), it can be assumed without loss of generality 
that the convergence p(uk(.), u0(.)) ~ 0 holds in the case of a certain control Uo(.) e U. Then, y(. ; to, 
Y0, uk(.)) ~ y(. ; to, Y0, u0(.)) in C(T; R n) and, by virtue of the completeness of the sets G(t), t ~ T, we 
have y(t; to, Yo, u0(.)) ~ G(t) for each t ~ T. It follows from this that Uo(.) ~ U,[G(.)] = U[G(.)] and, 
therefore, p(uk(.), U,[G(.)]) ---> 0. The theorem is proved. 

3. A P R E C I S E  S T A T E M E N T  OF T H E  P R O B L E M  

We will now consider the following version of the problem. Suppose the control system is linear 

k(t) = A(t)x(t)+ B(t)u(t)+ F(t), t o <- t <~ 0 (3.1) 

whereA(t) ,  B(t), F(t) are matrices with the dimensions n × n, n x m, n x 1, respectively with elements 
which are continuous in T and the sets P(t) are convex compact sets in R m which depend continuously 
o n t ~  T. 

Note that the dynamics of the convex compact sectionsX(t) = (x(t; to, Xo, u(.)) :x0 ~ Xo}, to <- t <~ 
and of  the pencil of motions X( . ;  to, x0, u(.  )) = (x( .; to, x0, u(.  )) :x 0 ~ X0} of system (3.1), which has 
emerged from the convex compact set X 0 under the control u( - )  at the instant to, are described using 
the support functions with the equality 

t 

6(l, K09, t)X(t)) = ~(l; K(t~, t o)X(t o )) + [ (K(~, x)[B('Ou('O + F(x)], l)dx 
to 
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where K(., .) is the Cauchy matrix of linear system (3.1) 

3K(t ,x)  13t = A(t)K(t, 'O, K(x ,x)  = E 

E is a unit matrix and ¢(/; W) = sup{(/, w) : w e W} is the support function of the set W C R n, 
l e L =  { l e R n : [ l ~ < l } .  

We will now specify the nature of the change in the information sets G(t) with time in the given precise 
definition. We assume that, whatever the instants of time tl, t2 e T, tl ~< t2, a certain permissible form 
of the control action u(.) e UIt 1, t2) is found, by means of which each point of the set G(t2) can be obtained 
by passing, by virtue of system (3.1), from a certain point of the set G(tl). In other words 

G(t 2) C X(t  2 ; t  I , G ( t  I), u( ' ) )  = {x(t  2 ; t  1, x I, u( . ) )  : x I ~ G(tl)} 

When the information sets evolve in such a way, it can be assumed that the set G(t) is a section at 
the instant t of a certain pencil of the system motions which emerges at the instant to from a certain set 
G*(t) C_ G(to) due to the action of a certain permissible control. It is clear that G*(to) = G(to) 
G*(t2) C G*(tl) when t2 >I tl. Suppose the mapping F : T × sub(R n) ---> sub(Rn), where sub(R n) is the 
set of all non-empty subsets of the set R n defines the law according to which the refinement which time 
of the set of initial states is attained. The law F must satisfy the natural conditions F(to, N) = N and 
F(t2, N) C F(tl, N) when t2 >t tl. The dynamics of the information sets can be represented in the form 

t 

g(o ,  t)G(t) = F( t ,  K(O, t o)G(t o )) + 5 K(O,'O[B(x)u(x) + F ( x ) ] d x  
to 

Henceforth, we will only consider compact and convex information sets. The set of all non-empty 
convex compact sets from R n is denoted by cconv(/P). A convex compact set is fully characterized by 
its support function. The set of all mappings G(.) : T ---> cconv(Rn), the evolution of which with time 
satisfies the conditions which have been described above, while the law F for the refinement of the initial 
data satisfies a Lipschitz condition with respect to the second variable in relation to the criterion v, is 
denoted by $1. This is a non-empty set. 

For each ideal result of observation G(.) e S~, it is natural to consider a set of permissible controls 
U°[G(.)] C_ U[G(.)], each of which, in a pair with some permissible law of refinement of the initial data, 
generates a given observation G(.). It is clear that U~[G(.)] C_ U[G(.)]. However, it is somewhatbet ter  
to find some control from U~[G(.)] than to find some control from U[G(.)] as each control from U~[G(.)] 
generates a certain pencil of motions which emerge at the instant to from a certain convex subcompact 
set of the compact set G(to) and is contained within the bounds of G(t), to <~ t <<- 0 and, consequently, 
possesses a certain universality with respect to the initial data. We shall also attempt to find the controls 
from U°[G(.)]. 

We introduce a system-model into the treatment, which is a copy of the initial system (3.1). The vector 
of the control actions in the model satisfies the same constraints as in the initial system. Using the system- 
model, we construct the appropriate pencils of motions and identify the positional strategy V of the 
control by the model with the mapping T × T × cconv(R ~) × cconv(/~) --> Z. In the case of arbitrary t 
e T, s e T, Y1 e cconv(Rn), Y2 e cconv(Rn), we assume that V(t, s, Y1, Y2) is an arbitrary element of U, 
i f t  ~ s while, if t  < s, then V(t, s, Y1, Y2) is the single element v(.) e U[t, s), which makes the quadratic 
functional 

$ $ 

H(u ) = 2(( if(l; K(O, t I ) Yt ) - if(l; K(O, t I ) Y2 ), ~ ( K(O, x)B(x)o (X), l) dx)) + O~(h) ~ Ilu (x)II 2 dx 
l t 

a minimum in U[t, s). In this functional, (( .,. )) is a scalar product in L2(L; R) (11" II* is the norm in this 
space) and a(.) is some positive function in R÷ which satisfies the condition a(h) ---> 0, h/a(h)  ---> 0 as 
h ~ 0 .  

We will now describe the restoration algorithm, assuming that the law for the refinement of the initial 
data is known to the observer. We fix arbitrary G(-) e $1, h > 0, Z(.) e =[h, G(.)] and the subdivision 
A of the interval Twith diam A ~< C.h and consider a control Uh e U. which is formed according to the 
rule 

Uh(t ) =Oi(t), t i <~ t< ti+ I, Vi( ')= V(ti , t i+l,Z(ti) ,Y(ti))  

where i = 0 . . . . .  m - 1 Y(ti) is section of the pencil of motions of the model at the instant t i and 
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tl 

K(O, t i)Y(t i) = F(t i, K(O, t o)Z(t o)) + S K(t~, x)[B(x)u h (x) + F(x)]dx 
to 

We now define the operator (algorithm) D according to the rule 

Dl(h, Z(.)) = uh(') (3.2) 

The operation of this algorithm with time is analogous to the operation of the similar algorithm from 
Section 2. 

We will now indicate certain conditions under which algorithm (3.2) automatically provides the solution 
of the present problem of the restoration of controls from the set U"[G(.)] for G(.) ~ S~. 

Condition 2: (a) v is the metric in cconv(R n) which is determined by the equality v(N], N2) = 
II ~( ' ;  N1) - t~(. N2) II*; (b) p is the metric of the space LP(T; Rm), 1 ~ p < ~; (c) ¢o is the norm of the 
space LZ(T; R m) and co. --- inf{to(u( • )) : u(. ) ~ U°[G( • )]}; (d) M = $1; (e) the law for refining the initial 
data for each process which is observed is known to the observer. 

Theorem 2. When condition 2 is satisfied, the dynamic algorithm (3.2) provides a solution of the 
restoration problem: for any fixed G(.  ) ~ M, the condition 

sup{p(Dl(h,Z(.)),U.[G(.)]): Z(.) e -[h,G(.)]} ---> 0, h --> 0 

is satisfied, where U.[G(.  )] = {u(. ) ~ U°[G( • )] : o~(u(. )) ~< o~.}. 

Proof. The property of the physical feasibility of dynamic algorithm (3.2) follows from the positional 
nature of the strategy V. The assertion of the theorem will now follow from the fact that, for each fixed 
G ( . )  ~ M in the case of any sequences {hk) C R+(hk ~ 0), {Z~(.)) (Z~(.) ~ ~,[hk, G(.))]) ,  the 
convergence p(uk( • ), u0(. )) ~ 0 when k ~ 0% where u0(.) is the single element of which the set U.[G( • )] 
consists, will hold for the controls uk(') = Dl(hk, Zk(')). Note that, generally s~eaking, the set U°[G( • )] 
can consist of several elements and is a convex bounded and closed set in L (T; Rm). Therefore, after 
the elements in the set U.[G(.  )] have been selected using the criterion ~o, just a single element of the 
set U°[G( • )] must remain with the minimal L2(T; Rm)-norm. 

On taking the rule for the formation of the control into account, it is possible to obtain the following 
estimate for the functional A~ 

max{Ak[t] : t e  T} ~< Coh~ 

where Co is a certain positive number which is independent of the number k and is solely determined 
a priori by the known data appertaining to the problem 

t 

A k It] = I1~('; K(O,t)Y k ( t ) ) -  tY(.; K(t~,t)G(t))I1. 2 + ~(h) J[ll uk (x)II z - II u0 (x)II 2 ]dx 
to 

The two estimates 

max{llo(-; K(O,t)Yk(t)) - t~(.;K(O,t)G(t))ll 2. :t ~ T} ~ Coh k + 2~(h)b(O - t o ) 

(b = sup{ll w II 2 : w ~ P(t), t e T} < ,,*) 

to(u k (.)) ~ oa(uo(.)) + Coh k I ot(h k ) 

follow from the above-mentioned estimate of the functional Ak. 
It follows from the last two estimates that o~(uk(.)) ~ o~(u0(.)) and uk(.) ~ u0(.) weakly in L2(T; Rm). 

Hence, Ug(.) ~ Uo(.) strongly in L2(T; R~). By virtue of the boundedness of the set U in L°°(T; Rm), the 
convergence uk(.) ---> u0(.) also holds strongly in LP(T; Rm), 1 <~ p < oo. The theorem is proved. 
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